Topics to review:

- Properties of quadrilaterals

Problem 1

A quadrilateral is any closed shape that has 4 sides.
(A) True
(B) False

A parallelogram is a quadrilateral with 2 pairs of parallel sides.
(A) True
(B) False

A triangle is a quadrilateral.
(A) True
(B) False

This shape is a trapezoid and a quadrilateral.
(A) True
(B) False

A rectangle is also a rhombus.
(A) True
(B) False

A square is also a rectangle.
(A) True
(B) False

Topics to review:

- Recognizing common 3D shapes

Problem 2
Match the 3D shapes with their correct name.
(1)

(2)

(3)

- Sphere - Cylinder
- Rectangular Prism
- Triangular Prism

Topics to review:

- Nets - 2D representations of 3D shapes
"nets" the 2D representation
Problem 3
Which nets will fold to make a cube?

Draw another version of a net that will fold to make a cube (that is not shown above).

6 surfaces in a cube

Pattern: 4 squares down the center, and a single square on each side

Topics to review:

- Circles - center, radius, diameter, and circumference

Problem 4
Draw a circle and label the center, radius, diameter, and circumference.

Answer the following questions about circles:
(1) The length of the outer part of a circle is called the: Circumference * (2) The distance from the center to the outer part is called the: Radius
(3) If the radius of a circle is length 9 , what is the length of the diameter?
(4) If we are given the length of the diameter, which operation can we apply to get the length of the radius? Take half of the diameter
(5) How many radii (plural of radius) does a circle have? Infinitely many! 2
$C=2$
What is the radius, diameter, and circumference of each of the circles? Note: Circumference equals 2π times the radius $(\mathrm{C}=2 \pi \mathrm{r})$.

0

$d=8$
$r=4$

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \pi 4 \\
& =2 \cdot 4 \cdot \pi
\end{aligned}
$$

(2)
(3)

49π

$$
\sqrt{49}=7
$$

$C=49 \pi$

$$
=8 \cdot \pi
$$

$=8 \pi$ * Approx. how many am is C? "not in terms
"Left in terms of pi" \rightarrow Answer is going to have π in it
(3)

$$
\begin{aligned}
& d=6 \\
& r=3 \\
& C=6 \pi=3 \cdot 2 \cdot \pi
\end{aligned}
$$

$$
d=2 r, r=\frac{d}{2}=d \cdot \frac{1}{2}
$$

$\frac{d}{2}=\frac{2 r}{2}=1 \cdot r=r \quad$ Apply the inverse operation Mult/Div Add/ Sub

$$
\frac{d}{2}=r
$$

$$
\begin{aligned}
2 \cdot \frac{d}{2} & =r \cdot 2 \\
d & =r 2
\end{aligned}
$$

* If given the diameter, how can we find the circumference? Note:
EX:

$$
d=5
$$

$$
\begin{gathered}
C=2 \pi r \\
r=\frac{C}{2 \pi} \\
C=5 \pi
\end{gathered}
$$

Surface Area of a Circle

$$
C=2 \pi r
$$

$$
\begin{aligned}
& A=\pi r^{2} \\
& r=3 \\
& A=\pi r^{2}, r=3 \\
& {\left[r^{2}=r \cdot r\right]} \\
& * \text { Exponents } \\
& \text { "r squared" } \\
& r^{5}=\text { r. r.r.r.r " } r \text { raised to } \\
& \begin{array}{l}
\text { the second } \\
\text { power" }
\end{array} \\
& \begin{array}{l}
r=3 \\
3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243
\end{array} \begin{array}{c}
\text { Power" } \\
\text { base is } r
\end{array} \quad\left\{\begin{array}{c}
\text {-base } \\
2 \text {-power }
\end{array}\right\}
\end{aligned}
$$

base is r
power is \rightarrow
$r^{4}=$ r.r.r.r
What is A in terms of

$$
\begin{aligned}
& r^{2}=3^{2}=3 \cdot 3=9 \\
& A=\pi r^{2}=\pi 9=9 \pi \\
& r^{10}=\underbrace{r \cdot r \cdots r \cdot r}_{10 \text { times }}
\end{aligned}
$$

* Square roots

Volume of Cylinder

$$
V=\pi r^{2} h
$$

EX: $r=5$

$$
\begin{array}{rlr}
V & =? \quad n=25 \\
r=5 \\
V & =\pi r^{2} h & 5^{2}=5.5 \\
& =\pi 5^{2} 25 & =25 \\
& =\pi 25 \cdot 25 \\
& =625 \pi &
\end{array}
$$

Cylinder $\rightarrow 2$ circles and a rectangle
$3 / 14 \approx 3.14$ pi day!

Volume of a Sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
A=\pi r^{2}
$$

$$
\frac{4}{3}=1 \frac{1}{3}
$$

"improper fraction" to
"Mixed Number"

$$
\begin{aligned}
& \frac{7}{3}= 2 \frac{1}{3} \\
& 2 \times 3=6 \\
& 7-6=1 \rightarrow T o p \\
& 4 \frac{2}{5}=\frac{22}{5}
\end{aligned}
$$

Mull. denom. by the Whole \#, then add the top $\#$ New top\#

- Cube -

- 6 surfaces, all squares
- Area of one of the squares $A=l \cdot w$

$$
A=l \cdot \omega=6 \frac{5}{8} \cdot 6 \frac{5}{8}
$$

- Convert to improper fraction, then mut.

$$
\begin{aligned}
& 6 \frac{5}{8}=\frac{53}{8} \\
& A=\frac{53}{8} \cdot \frac{53}{8}=\frac{2809}{64}
\end{aligned}\left[\begin{array}{l}
\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1 \\
\frac{1}{2}+\frac{1}{4} \\
\frac{1}{2} \cdot 6=3=\frac{1}{2} \cdot \frac{6}{1}
\end{array}\right.
$$

$\underline{\text { Surface Area }}=6 \cdot \underline{2809}$
Volume of the cube $V=l \cdot l \cdot l=l^{3}$

$$
\frac{2809}{64} \cdot \frac{53}{8}=\frac{2809.53}{64 \cdot 8} \quad l=\frac{53}{8}
$$

